/v

AARHUS UNIVERSITET

Microservices and DevOps

Scalable Microservices

Mandatory 2.1
Splitting SkyCave — From Three tier to puService

Henrik Baerbak Christensen

Y SkyCave Architecture

AARHUS UNIVERSITET

« SkyCave was never conceived as a MS architecture

— And designed as a classic three-tier architecture
« Ul -> Application -> Persistence
« Cmd -> PlayerServant -> CaveStorage

« But | design in the responsibility-centric perspective
— Roles that encapsulate cohesive responsibilities

— Roles as Program to an Interface
« Cave, Player, CaveStorage, ...

— Collaboration through Favor Object Composition

Y SkyCave Architecture

AARHUS UNIVERSITET
« If you review the central Player role, it is actually kind of a
Mediator, APl Gateway, type role

— A player deals with different aspects of the cave experience, and
the Player role encapsulate the interaction with these ‘sub roles’

| dig a room to the north Modifying the Room Matrix/Cave
* | post a message here Modifying the Wall messages
* | move to a new room Modifying the Player’s own data

« These sub-responsibilities (sh/c)ould have been
extracted into sub-roles, each with their own interface...

/v Sub-Responsibilities

AARHUS UNIVERSITET

« ... related to Rooms

— CaveStorage: addRoom, getRoom, getSetOfExitsFromRoom,
updateRoom

« ... related to Players

— CaveStorage: getPlayerByID, computeListOfPlayersAt,
updatePlayerRecord

e ... related to Messages
— CaveStorage: addMessage, updateMessage, getMessageL.ist

* And they are actually completely orthogonal to each
other
— ldeal borderlines for services (But, no real shared models &)

/v Service Responsibilities

AARHUS UNIVERSITET

... related to Rooms

— CaveStorage: addRoom, getRoom, getSetOfExitsFromRoom,
updateRoom

CaveService

e ... related to Players

— CaveStorage: getPlayerByID, computeListOfPlayersAt,
updatePlayerRecord

PlayerService

« ... related to Messages on the wall
— CaveStorage: addMessage, updateMessage, getMessageL.ist

MessageService

CS@AU Henrik Baerbak Christensen

VeV So — The Exercise is...

AARHUS UNIVERSITET

« To modernize/migrate SkyCave to a puService
a rCh |te Ctu re. .. Present Monolithic Architecture

:Cmd -PlayerProxy :PlayerServant :CaveStorage

o F rom " L{n'), move(n’)
Wos(pos)

i TO getRoom(pos) n

roomRecord

Y

updatePlayerPos(pos) |

Required Microservice Architecture

»
|

; ; . . ; :PlayerService
: : :Play :
Cmd PlayerProxy PlayerServant CaveServiceConnector Cohhacior
T T
move('n’
(") > move('n’) i i
g REST call to ouf] 1
| updatePos(pos) of-process !
! service I
! getRoom(pos) - !
| o 2 ' [REST call fo ouf
e ; of-pr'ocess
! roomRecord ! sen(lce
| updatePlayerPos(pos) t
i L
|z — (0]
CS@AU 6

/v NewPlayerServant

AARHUS UNIVERSITET
* Presently PlayerServant simply interact with

CaveStorage public UpdateResult digRoom(Direction direction, String description) {

Point3 p = Point3.porseString(position);
p.translate(direction);

RoomRecord room = new RoomRecord(description, getID()):

return UpdateResult.tronsloteFromHTTPStatusCodg(storage.addRoom(p.getPositionString(), room));

« Refactoring PIayerServant iInto ‘AP| Gateway’ kind of
abstraction coverride

public UpdateResult digRoom({Direction direction, String description) {

Strangler pattern /7 corevtere e erfers Gy e gien dinectic

Point3 p = Point3.porseString(position);
p.translate(direction);

RoomRecord room = new RoomRecord(description, getID()):;

int statusCode =S caveSEPuice.duPﬂSTunRuumPatﬂ(p.getPusitiunString(], room);
return UpdateResult.TransloteFromHTTPSTatusCode(statusCode);

CS@AU Henrik Baerbak Christensen 7

/v

AARHUS UNIVERSITET

Which boils down to

... a number of parts

/v DevOps...

AARHUS UNIVERSITET

* You do not do it alone

— Three groups collaborate
« A produces CaveService and associated CDT
« B produces MessageService + CDT
» C produces PlayerService + CDT

— And all validate the API protocol by review

— And then you strangle the Player by consuming the three micro
services...

« Creating connectors to Cave-, Message- and PlayerService...
* And refactor the Playerimplemention...

/v

The Parts

AARHUS UNIVERSITET
« Each group will solve

1.

Create and Document a REST API for your assigned MicroService; and
incorporate improvements and suggestions from your consuming groups.

Develop Contract Tests (CDTs) in Java/JUnit/TestContainers that verify and
document the developed REST API - and provide your consuming groups with
these CDTs.

Develop your assigned micro service (either Cave-, Message-, or
PlayerService), and provide it as a docker hub image to your consuming
groups.

Strangle the SkyCave daemon, so a new implementation of the Player interface
(a "StrangledPlayerServant") becomes an API Gateway that interacts with

Cave-, Player-, and MessageServices (your own + two consumed services; and
notably the CaveStorage interface and implementations are eliminated. This will
also entail developing Connector Tests for the connectors to the three services.

Deploy to production. Crunch will come by...

VeV Create/Document API

AARHUS UNIVERSITET
« To get going, | have defined a milestone plan with dates

1. Send your service API specification to your consuming groups, as well as me. Deadline: 3/11 2021.

2. Review the two supplier service APl specifications, evaluate adherence to the REST style, feasibility
and report any inconsistencies, errors, or other aspects that may lead to misunderstandings.
Deadline: 5/11.

3. Incorporate remarks, update your API, and notify to consuming groups. Deadline: 9/11.

 If you have problems with the dates, please talk to each
other (and me) about finding new dates...

 APIs arerequired to be REST format
— Use POST and GET, do not just do URI Tunneling

CS@AU Henrik Baerbak Christensen 11

eV Format

AARHUS UNIVERSITET
« API specification in ‘FRDS §7.7’ format unless all three

groups decides otherwise (OpenAPI or what have you).
— Not a precise format but...

* | do not want to force yet another
learning curve on you

— If all agree you can do as you please,
but only if all agree...

CS@AU Henrik Baerbak Christensen 12

/v CDT and Service Development

AARHUS UNIVERSITET

* Develop CDT

— In Java and TestContainers !
« And provide that to your consuming groups
— Git repo, or source files + gradle dependencies

« Develop the Service itself
— In any toolstack you wish
— Provide a docker image for it, to consuming groups (+me)
* Code and docker image may be public

— Must be configurable to allow either
» FakeObject- or NoSQL persistence
— Env variables, command line argument, CPF file, what-have-you

. Deadline: 15/11. You only need to support the fake object storage at this deadline.

eV Connector Tests

AARHUS UNIVERSITET
* Do not issue Http requests directly in you new
Playerservant Ez;i;iﬁzdatenesult digRoom(Direction direction, String description) {
// Colculate the offsets in the given direction
Point3 p = Point3.parseString(position);
— Program to an Interface !
RoomRecord room_= new etID());
int statusCodel= caveService.doPl]STonRoomPatﬂ(p.getPositionStr‘ing(), room);
([] SO return UpdateR
+

— Develop XServiceConnectors for the three services

 (Interface (+ FakeObject) + Real REST connector)

— The interface for each is almost given by cutting CaveStorage into
three...

— Develop out-of-process Integration tests (connector tests)

CS@AU Henrik Beerbak Christensen 14

eV Finalize Service Persistence

AARHUS UNIVERSITET

* Develop the persistence layer

— Using any NoSQL of your choose Deadline: 18/11.
» Redis, MongoDB, Cassandra, Riak, ...

* Meaning real deployment requires a compose-file

« Optional for 1-person groups

Y Strangling

AARHUS UNIVERSITET
« Do a step-wise strangling of the Player role

Present Monolithic Architecture

— ... one service at a time

:Cmd :PlayerProxy :PlayerServant :CaveStorage
move('n’) % move(n’) E
; |
S —— |
updatePo:
<L s(pos) E
getRoom(pos) !
>
= |
roomRecord !
|

updatePlayerPos(pos) |

:
|

Required Microservice Architecture

:Cmd :PlayerProxy :PlayerServant :CaveServiceConnector FakeCaveStora ge
T
S move('n’) i !
S— REST call to out|
| updatePos(pos) of-process
| service

getRoom(pos) I

\/

Y

roomRecord

e

updatePlayerPos(pos)

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
» |

CS @AU < e 16

/v

Program To Interface...

AARHUS UNIVERSITET

* Note: These individual parts/steps can be done In
(almost) any order!
— You can start Strangling, before you have the service APl and

Required Microservice Architecture
Fake
:Cmd :PlayerProxy :PlayerServant : Proxy PI aye rSer FakeCaveSto rage
CaveService vice
34 T
move('n’) N moveli) i i
Ll I
— AN oofl to ourh
| updatePos(pos) 0 :
: 'A }
I getRoom(pos) P I
| ol |
| o | [RESY N
= ; of-pn !ﬁ
: roomRecord ! sel ;
| updatePlayerPos(pos) |
| » |
|< ,,,,,,,,,,,,,,,,,,,) >

CS@AU

Henrik Baerbak Christensen 17

VeV Deliver...

AARHUS UNIVERSITET

* Develop a compose-file for the full SkyCave daemon
stack

e ... and deploy it to your prod server...
— Free to forget old data, migrating data is hell-on-earth...

« Two options actually...
— Your stack deploys all services

— Your stack refers to external group’s deployed services
« Will have an interesting implication on what users see ©

/v

AARHUS UNIVERSITET

Hints and Help

/v Experience from Last Time

AARHUS UNIVERSITET

« The Connector + Strangling part is not “difficult’ but
requires some time

— Last time, people suddenly got very busy 4 days before
deadline...

« Take care while Strangling

— ltis easy to ‘start in 10 ends and end up in big-ball-of-mud’

» “l introduce the message connector in my player servant which
becomes a slow out-of-process test, while fiddling with the CPF and
having to reset the Redis every, oh, and | also need to catch this
UniRest Exception which...”

/v PlayerServant Strangling

AARHUS UNIVERSITET
° Strangler pattern m
— Present: All ‘micro-roles’ are in ‘CaveStorage’ =™
— Strangling Step 1: L,?i’,,,J,‘,Fim,,J,J,?}E,,‘,,Q,‘,Fﬁ?ﬂfi,‘,,‘fiﬁ%,‘]
. [| B o
* Replace ‘room’ calls with related st | | s | | R
— caveservice.doThatRESTCall(....); U S

» ... while keeing the FakeCaveStorage to handle the two other ‘micro-

roles’s responsibilities.... N
Strangle your own service first!

— Strangling step 2:
* Replace micro-role 2
* Etc.

CS@AU Henrik Baerbak Christensen 21

/v Scaffolding

AARHUS UNIVERSITET

* Do a bit of extra work to keep tests runnlng all the time!

— Use intermediaries, keep stuff
that will eventually disappear...

+ If you “fall into the abyss’, consult Bl ==
my own first steps of strangling... § '

factory = new Standard Server! Factory (property! Reader) {
lllllllllllll reatePlayerServant(LoginResult theResult, String playerID, jectManager objectManager) {
testlLogger .info("method=createPlayerServant. implementation Class=StrangledPlayerServant"” -
r S gl L Se t(theResult, playerID, objectManager);
}
I

 Find a link to a document in the exercise hint section...

CS@AU Henrik Baerbak Christensen 22

Y Configuring new services

AARHUS UNIVERSITET

« SkyCave’s Factory system can read any service
specification, not just the QuoteService etc.
— Obey the ‘naming’ convention, with a prefix

TDD of CaveService strangling

< cpf/http.cpf

CAVE_SERVICE_JCONNECTOR_IMPLEMENTATION = cloud.cave.strangling.FakeCaveService
CAVE_SERVICE JSERVER_ADDRESS = localhost:9999

pl._lblic class StranglingConstants {
public static final String CAVE_SERVICE = "CAVE_SERVICE";
-) - T
CaveServerFactory factory = objectManager.getFactory(); T

this.caveService = (CaveServiceConnector)
factory.createServiceConnector(CaveServiceConnector.class,
StranglingConstants.CAVE_SERVICE, objectManager);

lLogger .info("method=constructor, action=created-caveService, caveService={}", caveSer -.';:p);

CS@AU Henrik Baerbak Christensen 23

/v Security

AARHUS UNIVERSITET

You could ensure only authenticated SkyCave players
are allowed to access your group’s service...

By
— Requiring ‘Authorization: Bearer (accessToken) header in the
req uest L Introspect an AccessToken

POST /api/v3/introspect

— Do /introspect on cavereg.baerbak.com s s

ttttttttttttttttt kycave service:{service_pwd}
{
B t "token": {access token}
u LI ¥
Response:
Status: 481 UNAUTHORIZED
{
— Uhum, do not...
"message": "Could not introspect token {access token}"

. . . . }
« The exercise Is big enough as it stands. . ma«

ccessToken": "6f9334b3-ced7-46ed-bAf8-002e49b15a42",

"httpStatusCode™: 200,

"subscription™: {
"dateCreated”: "2015-86-14 11:01 AM GMT",
"groupName™: "group-1@",
"groupToken™: "Manganese946_Serbiadl9”,
"loginName": "rwar31t",
"playerID": "a36@7675-99b4-4ab7-8aa9-61592676227c",
"playerflame”: "Elialgrg”,
"region”: "AALBORG"

