
Microservices and DevOps

Scalable Microservices
Mandatory 2.1

Splitting SkyCave – From Three tier to µService

Henrik Bærbak Christensen



SkyCave Architecture

• SkyCave was never conceived as a MS architecture

– And designed as a classic three-tier architecture

• UI -> Application -> Persistence

• Cmd -> PlayerServant -> CaveStorage

• But I design in the responsibility-centric perspective

– Roles that encapsulate cohesive responsibilities

– Roles as Program to an Interface

• Cave, Player, CaveStorage, …

– Collaboration through Favor Object Composition

CS@AU Henrik Bærbak Christensen 2



SkyCave Architecture

• If you review the central Player role, it is actually kind of a 

Mediator, API Gateway, type role

– A player deals with different aspects of the cave experience, and 

the Player role encapsulate the interaction with these ‘sub roles’

• I dig a room to the north Modifying the Room Matrix/Cave

• I post a message here Modifying the Wall messages

• I move to a new room Modifying the Player’s own data

• These sub-responsibilities (sh/c)ould have been

extracted into sub-roles, each with their own interface…

CS@AU Henrik Bærbak Christensen 3



Sub-Responsibilities

• … related to Rooms

– CaveStorage: addRoom, getRoom, getSetOfExitsFromRoom, 

updateRoom

• ... related to Players

– CaveStorage: getPlayerByID, computeListOfPlayersAt, 

updatePlayerRecord

• ... related to Messages

– CaveStorage: addMessage, updateMessage, getMessageList

• And they are actually completely orthogonal to each 

other

– Ideal borderlines for services (But, no real shared models )

CS@AU Henrik Bærbak Christensen 4



Service Responsibilities

• … related to Rooms

– CaveStorage: addRoom, getRoom, getSetOfExitsFromRoom, 

updateRoom

• ... related to Players

– CaveStorage: getPlayerByID, computeListOfPlayersAt, 

updatePlayerRecord

• ... related to Messages on the wall

– CaveStorage: addMessage, updateMessage, getMessageList

CS@AU Henrik Bærbak Christensen 5

MessageService

PlayerService

CaveService



So – The Exercise is…

• To modernize/migrate SkyCave to a µService 

architecture…

• From…

• To…

CS@AU Henrik Bærbak Christensen 6



NewPlayerServant

• Presently PlayerServant simply interact with 

CaveStorage

• Refactoring PlayerServant into ‘API Gateway’ kind of 

abstraction

– Strangler pattern

CS@AU Henrik Bærbak Christensen 7



Which boils down to

… a number of parts



DevOps…

• You do not do it alone

– Three groups collaborate

• A produces CaveService and associated CDT

• B produces MessageService + CDT

• C produces PlayerService + CDT

– And all validate the API protocol by review

– And then you strangle the Player by consuming the three micro 

services…

• Creating connectors to Cave-, Message- and PlayerService…

• And refactor the PlayerImplemention…

CS@AU Henrik Bærbak Christensen 9



The Parts

• Each group will solve
1. Create and Document a REST API for your assigned MicroService; and 

incorporate improvements and suggestions from your consuming groups. 

2. Develop Contract Tests (CDTs) in Java/JUnit/TestContainers that verify and 

document the developed REST API - and provide your consuming groups with 

these CDTs. 

3. Develop your assigned micro service (either Cave-, Message-, or 

PlayerService), and provide it as a docker hub image to your consuming 

groups.

4. Strangle the SkyCave daemon, so a new implementation of the Player interface 

(a "StrangledPlayerServant") becomes an API Gateway that interacts with 

Cave-, Player-, and MessageServices (your own + two consumed services; and 

notably the CaveStorage interface and implementations are eliminated. This will 

also entail developing Connector Tests for the connectors to the three services.

5. Deploy to production. Crunch will come by… 

CS@AU Henrik Bærbak Christensen 10



Create/Document API

• To get going, I have defined a milestone plan with dates

• If you have problems with the dates, please talk to each 

other (and me) about finding new dates…

• APIs are required to be REST format

– Use POST and GET, do not just do URI Tunneling

CS@AU Henrik Bærbak Christensen 11



Format

• API specification in ‘FRDS §7.7’ format unless all three 

groups decides otherwise (OpenAPI or what have you).

– Not a precise format but…

• I do not want to force yet another

learning curve on you

– If all agree you can do as you please,

but only if all agree…

CS@AU Henrik Bærbak Christensen 12



CDT and Service Development

• Develop CDT

– In Java and TestContainers !

• And provide that to your consuming groups

– Git repo, or source files + gradle dependencies

• Develop the Service itself

– In any toolstack you wish

– Provide a docker image for it, to consuming groups (+me)

• Code and docker image may be public

– Must be configurable to allow either

• FakeObject- or NoSQL persistence

– Env variables, command line argument, CPF file, what-have-you

CS@AU Henrik Bærbak Christensen 13



Connector Tests

• Do not issue Http requests directly in you new 

PlayerServant

– Program to an Interface !

• So

– Develop XServiceConnectors for the three services

• (Interface (+ FakeObject) + Real REST connector)

– The interface for each is almost given by cutting CaveStorage into 

three…

– Develop out-of-process Integration tests (connector tests)

• Hint: By making a FakeObject implementation, you can start the Strangling 

even before you get the external services!

CS@AU Henrik Bærbak Christensen 14



Finalize Service Persistence

• Develop the persistence layer

– Using any NoSQL of your choose

• Redis, MongoDB, Cassandra, Riak, …

• Meaning real deployment requires a compose-file

• Optional for 1-person groups

CS@AU Henrik Bærbak Christensen 15



Strangling

• Do a step-wise strangling of the Player role

– … one service at a time

CS@AU Henrik Bærbak Christensen 16

FakeCaveStorage



Program To Interface…

• Note: These individual parts/steps can be done in 

(almost) any order!

– You can start Strangling, before you have the service API and 

images!

CS@AU Henrik Bærbak Christensen 17

Fake 
CaveService

FakeCaveStorage
ProxyPlayerSer

vice



Deliver…

• Develop a compose-file for the full SkyCave daemon 

stack

• … and deploy it to your prod server…

– Free to forget old data, migrating data is hell-on-earth…

• Two options actually…

– Your stack deploys all services

– Your stack refers to external group’s deployed services

• Will have an interesting implication on what users see ☺

CS@AU Henrik Bærbak Christensen 18



Hints and Help



Experience from Last Time

• The Connector + Strangling part is not ‘difficult’ but 

requires some time

– Last time, people suddenly got very busy 4 days before 

deadline…

• Take care while Strangling

– It is easy to ‘start in 10 ends and end up in big-ball-of-mud’

• “I introduce the message connector in my player servant which 

becomes a slow out-of-process test, while fiddling with the CPF and 

having to reset the Redis every, oh, and I also need to catch this 

UniRest Exception which…”

CS@AU Henrik Bærbak Christensen 20



PlayerServant Strangling

• Strangler pattern

– Present: All ‘micro-roles’ are in ‘CaveStorage’

– Strangling step 1:

• Replace ‘room’ calls with related

– caveservice.doThatRESTCall(….);

• … while keeing the FakeCaveStorage to handle the two other ‘micro-

roles’s responsibilities….

– Strangling step 2:

• Replace micro-role 2

• Etc.

CS@AU Henrik Bærbak Christensen 21

Strangle your own service first!



Scaffolding

• Do a bit of extra work to keep tests running all the time!

– Use intermediaries, keep stuff

that will eventually disappear…

• If you ‘fall into the abyss’, consult

my own first steps of strangling…

• Find a link to a document in the exercise hint section…

CS@AU Henrik Bærbak Christensen 22



Configuring new services

• SkyCave’s Factory system can read any service 

specification, not just the QuoteService etc.

– Obey the ‘naming’ convention, with a prefix

CS@AU Henrik Bærbak Christensen 23



Security

• You could ensure only authenticated SkyCave players 

are allowed to access your group’s service…

• By

– Requiring ‘Authorization: Bearer (accessToken)’ header in the 

request…

– Do /introspect on cavereg.baerbak.com

• But…

– Uhum, do not…

• The exercise is big enough as it stands.

CS@AU Henrik Bærbak Christensen 24


